Benchmarks

The performance for some typical operators is summarized below. For fourth-order tensors, both Array and SArray use the classical Voigt form to correctly handle symmetries. The benchmakrs show that Tensor offers performance comparable to SArray without the hassle of using the Voigt form.

a = rand(Vec{3})
A = rand(SecondOrderTensor{3})
S = rand(SymmetricSecondOrderTensor{3})
AA = rand(FourthOrderTensor{3})
SS = rand(SymmetricFourthOrderTensor{3})
OperationTensorArraySpeedupSArraySpeedup
Single contraction
a ⊡ a2.785 ns9.256 ns×3.33.095 ns×1.1
A ⊡ a3.396 ns53.716 ns×16.03.396 ns×1.0
S ⊡ a3.396 ns53.694 ns×16.03.396 ns×1.0
Double contraction
A ⊡₂ A3.706 ns11.111 ns×3.03.406 ns×0.92
S ⊡₂ S3.095 ns10.189 ns×3.33.406 ns×1.1
AA ⊡₂ A7.742 ns71.562 ns×9.27.732 ns×1.0
SS ⊡₂ S4.097 ns63.507 ns×16.04.257 ns×1.0
Tensor product
a ⊗ a3.406 ns33.466 ns×9.83.716 ns×1.1
Cross product
a × a3.406 ns33.466 ns×9.83.716 ns×1.1
Determinant
det(A)3.095 ns165.120 ns×53.03.095 ns×1.0
det(S)3.396 ns165.198 ns×49.03.095 ns×0.91
Inverse
inv(A)6.201 ns483.882 ns×78.07.410 ns×1.2
inv(S)4.929 ns487.738 ns×99.07.400 ns×1.5
inv(AA)958.000 ns1.547 μs×1.6968.300 ns×1.0
inv(SS)364.341 ns992.900 ns×2.7356.072 ns×0.98

The benchmarks are generated by runbenchmarks.jl on the following system:

julia> versioninfo()
Julia Version 1.11.6
Commit 9615af0f269 (2025-07-09 12:58 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 4 × AMD EPYC 7763 64-Core Processor
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)