Benchmarks

The performance for some typical operators is summarized below. For fourth-order tensors, both Array and SArray use the classical Voigt form to correctly handle symmetries. The benchmakrs show that Tensor offers performance comparable to SArray without the hassle of using the Voigt form.

a = rand(Vec{3})
A = rand(SecondOrderTensor{3})
S = rand(SymmetricSecondOrderTensor{3})
AA = rand(FourthOrderTensor{3})
SS = rand(SymmetricFourthOrderTensor{3})
OperationTensorArraySpeedupSArraySpeedup
Single contraction
a ⊡ a3.396 ns8.955 ns×2.63.095 ns×0.91
A ⊡ a3.095 ns49.443 ns×16.03.406 ns×1.1
S ⊡ a3.406 ns49.130 ns×14.03.406 ns×1.0
Double contraction
A ⊡₂ A3.406 ns10.810 ns×3.23.105 ns×0.91
S ⊡₂ S3.095 ns9.878 ns×3.23.116 ns×1.0
AA ⊡₂ A7.722 ns67.731 ns×8.87.722 ns×1.0
SS ⊡₂ S4.068 ns59.154 ns×15.04.037 ns×0.99
Tensor product
a ⊗ a3.105 ns28.958 ns×9.33.406 ns×1.1
Cross product
a × a3.105 ns28.958 ns×9.33.406 ns×1.1
Determinant
det(A)3.406 ns166.262 ns×49.03.095 ns×0.91
det(S)3.095 ns166.632 ns×54.03.095 ns×1.0
Inverse
inv(A)6.201 ns464.286 ns×75.07.420 ns×1.2
inv(S)4.889 ns465.636 ns×95.07.411 ns×1.5
inv(AA)971.071 ns1.554 μs×1.6980.059 ns×1.0
inv(SS)383.315 ns911.238 ns×2.4371.951 ns×0.97

The benchmarks are generated by runbenchmarks.jl on the following system:

julia> versioninfo()
Julia Version 1.12.4
Commit 01a2eadb047 (2026-01-06 16:56 UTC)
Build Info:
  Official https://julialang.org release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 4 × AMD EPYC 7763 64-Core Processor
  WORD_SIZE: 64
  LLVM: libLLVM-18.1.7 (ORCJIT, znver3)
  GC: Built with stock GC
Threads: 1 default, 1 interactive, 1 GC (on 4 virtual cores)